CPSC 501 W25 T0O2 A1 Report
Devon Harstrom, 30132397

The original code is by Ethan McCorquodale. I was given permission to use it: “... I give you
guys (and anyone else who is in the same situation) permission to use this project.”

The repository of the project is here:
https://csgit.ucalgary.ca/devon.harstrom/CPSC-501/-/tree/main/Assignment _1?ref tvpe=heads

The refactoring I performed on the original code was: 1. De-nesting, Method extraction,

Creating subclasses, renaming and removing unused code, and commenting. Each refactor is

discussed below, and the writing is roughly half a page long. However, code takes up quite a bit
of space on the document, so each refactor has around two pages.

Firstly, the refactoring I performed for the first refactor was replacing nested conditionals
with guard clauses. When looking at the original code, almost every function in the World.java
file contained heavily nested conditional statements. This made it very difficult to determine the
flow and purpose of the code. This was the code smell, long complex nested conditionals.
Immediately, I knew that implementing guard clauses would improve the readability of the code,
which is one of the main issues with the original code. The steps I took to complete this refactor
are as follows: I first found which conditional statements resulted in the function terminating or
loops continuing. This often includes the else section of the original code. For example (not part

of code, just visual example):
if (a){

If (b){
If (c){
//do something

}

In this case, if the first conditional never passes, then the others won’t, so instead, we can
separate the condition and convert it to a guard clause by taking the negation of the condition.
From there, if the negation of the condition is true, then we can return. This only works if there is
one main nested conditional tree and not if there are else-if statements. So, for the example

above, it would look like this:
if (12){
return

}
If (!b){
return

}
I (c){

//do something

}

https://csgit.ucalgary.ca/devon.harstrom/CPSC-501/-/tree/main/Assignment_1?ref_type=heads

The original code had plenty of places in the World.java file with this code structure. After this
refactoring, the code has a flat list of conditionals. This heavily improves the readability of the
code as the flow is now apparent: ‘a’ and ‘b’ must be true to get to the main conditional. From
this refactoring, many more refactor types can build off of it, such as method extraction
separating conditionals and blocks of code into other functions and/or consolidating Conditional
Expression, which moves all the conditionals into a single expression if they share the same
outcome. In fact, for my refactor 2, I built off this refactor and extracted methods, which are
discussed later. I altered every function in the World.java file to be de-nested, but will show one
of them as

701

an example. Originally, the function sortDead() in World.java file looked like this:

d rtD () A

All the code was tested through junit tests for each altered function (all of them) to see if the
same values/results were achieved. Since it is mainly a GUI project, I compared the outcome of
the GUI across both the original and refactored versions. For example, this code used this test:

in terminal (re

ion.length -
n.length -

Which checks if the null is at the end of the location array. All these tests passed. All these
refactors were done on the refactor_1 branch and 05eeace9b8fb646f577847264f1b165eaec127as
is the SHA of the commit for the completion of this function while this is for the entire complete
refactor: e0863597e¢3e809388191adf14b843be33559d112

The next refactor (refactor 2) was built off refactor one and is “method extraction.” The
other immediate code smell was long methods. Even after de-nesting the conditionals, the
methods were still too long and confusing. For all the functions in World.java except for
sortDead(), sortL.ocation(), and checkPerim(), I applied this refactor. The methods exceeded 50+
lines in some places and were generally large and confusing, so extracting methods would greatly
benefit the code. On top of this, there were some places where code was being duplicated, which
could benefit from being one function call. For example in the move() function there are these
conditionals
if (loc[i

These can be extracted into one method using this refactoring method which I did here:

public void movelLogic (char ent int in , int increment) {

This removes duplicate code and increases readability by reducing the size of methods. The
move function went from this:

public void move (int inc

if (checkPerim(index) ==

return;

(loc[index] .getCanMove () ==false) {

return;

oc[index] .getRow()-1 != -1)&&(loc[index].getColumn () -
f oc[index] .getType () ==
loc[index] .getRow()-1] [loc[index] .getColumn () -
loc[index] .getRow () ;
loc[index] .getColumn () ;
] .setRow (oldRow-1) ;
[index] .setColumn (oldCol
: rld[oldRow-1] [0ldCol-1]
aWorld[oldRow] [01ldCol] = n

c [index

}
if ((loc[index] .getRow () + I=) && (loc[index] .getColumn () + =)) |
((loc[index] .getType () ==
brld[loc[index] .getRow () +1] [loc[index] .getColumn () +
iR loc[index].getRow () ;
loc[index] .getColumn () ;
[index] .setRow (0l1dR
[index]
rld[old
rld[ol

((GameStatus.de

return;

(lLoc[index] .getType ()
status.elfMoveDebug (oldRow,0ldCol, loc[index] .getRow () ,loc[index] .getRow()) ;
if (loc[index] .getType () = '0') {
atus.orcMoveDebug (oldRow, o ol,loc[index] .getRow (), loc[index].getRow()) ;

To this:

public voic ove (int index)

(checkPerim (index)
return;

(loc[index]

return;

(loc[index] .getCanMove () ==false) {

return;

if ((loc[index] .getRow () - = -1)&&(loc[index] .getColumn () -
moveLogic('E', index, -1);

}

if ((loc[index] .getRow () + I=) && (loc[index] .getColumn () +

moveLogic (index,) 2

((GameStatus.deb (0)s] rue) && (loc[index] != null))

The steps I took were to look for conditionals, loops, duplicate code, or long portions of code.
From there, I first created a new method with a good name, pulled those chunks of code out,
removed it from its prior spot and calling the new method. Next, I put the code chunk in the new
method and passed the required parameters, such as local variables. This refactoring could go
further by potentially moving these functions to separate classes if the file ends up being too
long, but for the simplicity of the project, I believed this would be an unnecessary change. The
code was again tested on the same test file for example, move was tested with this, which sets up

a mock world and checks if the orc moved after calling the function.

All these functions were refactored on the refactor_2 branch, and
a144509c43132183846d504308374bed8bf2e49¢ is the SHA of the commit for the completion of
the move function, which is the last function I completed.

Next, for refactor 3, the prominent code smell was a “large class.” There was too much

information within the class for such a simple purpose. This was within the Entity.java class,

which is for both orcs and elves. From this ‘smell,” I decided it could be refactored to implement
subclasses. Orc and Elf could be a subclass of entity and have the health, damage, and
appearance in their own classes. This would improve readability and understanding. While also
decreasing the complexity of the Entity class. This is what the original Entity class code looked
like:

public static f char DEFAULTiAPPEARANCE = 'X"';
public static fir char ELF = 'E';
public s
public static final char ORC = 'O';
public static fina int DEFAULT HP
ORC_DAMAGE
public static final int ELF DAMAGE
public static final int ORC_HP

public static final int ELF HP

private char appearance;
int hitPoints;

int damage;

boolean attacking= false;

public Entity ()

setAppearance (DEFAULT APPEARANCE) ;

setHitPoints (DEFAULT HP) ;

public Entity(char ne
{

1

appearance = r

hitPoints = DEFAULT HP;

damage = ORC_DAMAGE;

public Entity(char ne pearance, int newHitPoints, int ne
{

1

setAppearance (n

setDamage (newDamage) ;

setHitPoints (newHitPoints) ;

// .. plenty of getter setters

This class is too long and can be split up, so only the Orc subclass has information on Orcs. The
main refactoring techniques I used were “‘extracting subclass* and some “polymorphism.” My
steps were to create two new classes and transfer all the relevant variables to the new subclasses,
such as ELF_HP or ELF_DAMAGTE, etc. I then create a unidirectional relationship with Entity
for both Orc and Elf. They inherit properties through extension but not the other way around. I
then use polymorphism to move the debug statements specific to the two entities into the
subclasses. Lastly, I moved the elf and orc counter from the world.java file into the entity class,
as it made more sense to have entity counts in the entity class. These refactors are beneficial as
they establish a relationship that improves overall readability and understanding of the code
structure and enhances the readability of the entity class by moving variables to the necessary
subclass. This also adds the start of producing code that could be extended, for example, other
entity types like dwarves, which further benefitted from polymorphism. Other refactors could
come from this, such as dealing with primitive obsession and replacing static variables with local
subclass variables. After the refactoring, the new entity class looks like this:

s Entity

appearance,

int hitPoints, int damage) ({

appearance;

= damage;

abstract debugAtt

int targetColumn,

public
targetRow, int

void

abstract

public

abstract void

public

int newCol) ;

more getters and setters

class E1lf extends Entity

static final char

public

public static final

public static final int

hitPoints;

ack (GameStatus status, int

HP, int HPAfter);

ditions (GameStatus status,

ement (GameStatus status, int

tempRow,

oldRow, int

int

int entityCounter) ;

oldCol,

tempColumn,

1

t

int

newRow,

public void debugAttack (GameStatus status, int tempRow, int tempColumn, int targetRow,

targetColumn, int HP, int HPAfter)

status.elfAttackDebug (tempRow, tempColumn, targetRow, targetColumn, HP, HPAfter);

@Override
public void debuglLossConditions (GameStatus status, int entityCounter) {

status.orcLoseDebug (entityCounter);

Movement (GameStatus status, int oldRow, int 0ldCol, int newRow, int

status.elfMoveDebug (oldRow, 0ldCol, newRow, newCol) ;

Testing for these changes was with two tests called testEntities() and testEntitiesCounters():

testEntities () {
Entity testElfEntity new E1f () ;

Entity testOrcEntity = new Orc();

assertNotNull (testElfEntity, "should not be null");

assertNotNull (testOrcEntity, "should not be null");

assertEquals('E', testElfEntity.getAppearance())

assertEquals('0O', testOrcEntity.getAppearance());

int

assertEquals (7, testElfEntity.getDamage()) ;

assertEquals (3, testOrcEntity.getDamage()) ;

assertEquals (15, testElfEntity.getHitPoints())

assertEquals (10, testOrcEntity.getHitPoints())

@Test
void testEntityCounters () {
assertEquals (0, Entity.getElfCounter());

assertEquals (0, Entity.getOrcCounter()):;

Entity.incrementElfCounter(5) ;

Entity.incrementOrcCounter(-1);

assertEquals (5, Entity.getElfCounter());

assertEquals (-1, Entity.getOrcCounter()):;

Entity.setElfCounter(0) ;

Entity.setOrcCounter(0) ;

assertEquals (0, Entity.getElfCounter());

assertEquals (0, Entity.getOrcCounter()):;

They check things like if the entity is not null, appearance, damage, health, counter, and

increment. It also uses the same tests as before to make sure nothing has changed. And again

comparing GUI outputs with the original. All these refactors were done on the refactor_3 branch,
and f48e707d4dd492bba6c38908c0350463543e4f3e is the SHA of the commit for the
completion of the entire refactor.

Next, for refactoring 4, I did many small refactoring changes in many of the files for
various ‘code scents.” These were mainly dead code, poor variable naming, unnecessary global
variables, warnings, and a lack of general code consistency. I refactor these issues by removing
dead code, changing variable names, fixing warnings, and changing some conditionals. These are
all very simple. The steps for dealing with dead code are first to see if certain parts of code are
being called or used anywhere, such as this, from the original code: (in world.java)

public static final

public static final

public static final ELVES WIN

public static final DRAW = 2;
> final int CEASE FIRE = 3;

final NOT OVER =

Which I found to not be used or called anywhere and then I simply removed it from the code.
This helps reduce confusion with code that isn’t being used, improving readability. The other
refactor is changing names, the steps are to find poorly named variables, methods, classes, etc.
and giving them a better name. For example, I change this (in places like GamePanel.java):

for (int r = 0; r<world.SIZE;r++) {

for (int ¢ = 0; c<world.SIZE; c++) {

To this, which makes it more readable.
for (int row = 0; row<world.SIZE;row++) {

for (int column = 0; column<world.SIZE; column++) {

In the World.java file, I moved these two variables to local variables

int HP;

int HPAfter;

The steps I took were very similar to the name changes. I looked to see where these were called

and if they needed to be global. I could create them locally if I found that it wasn’t. I also

refactored conditionals like this: (from GamePanel.java)
if (GameStatus.debugModeOn == false) {...

And changing it to more conventional code:
if (!GameStatus.debugModeOn) {

The steps are just to find code that doesn’t fit these conventions and adjust them. All of these
small refactors improve the overall readability of the code and reduce confusion and clutter. They

also solve the code smell of comments where good code should not need comments. These types
of refactoring are more from the results of other refactors and not so much a branch for other
refactoring techniques. These reactors were tested using the same test file and comparing GUI to
make sure nothing had changed. These refactors were done on the refactor_4 branch, and
1dc732eab1b8aabb3c35d2950b89096ac7024142 is the SHA of the commit for the completion of
the entire refactor list.

Lastly, for Refactor 5, I dealt with the code smell of comments. However, I added
comments and will argue that adding comments is a valid refactoring method to improve
readability. The Fowler text discusses writing code without the need for comments. While I
agree, adding comments enhances the readability of code. Comments certainly can be overdone
and cannot make bad code good. However, if you aim to create good code, comments separately
amplify the readability of the code. Code should not rely on comments, but they can improve it.
So, I added comments to some of the functions in the World.java file for this refactor. For

example, the victoryLogic() function: (before and after):
void victorylLogic (Entity attackingEntity) {
(attackingEntity inste f E1f && Entity.getOrcCounter() > 0) {

return;

(attackingEntity instanceof Orc && Entity.getEIlfCounter()

urn;

t.println (attackingEntity.getClass () .getSimpleName () + " wi
s left.");

amRunning = false;

public id vic Ty ic(Entity attackingEntity) {
if (attackingEntity ins f E1f && Entity.getOrcCounter() > 0) {

return;

se if (attackingEntity instanceof Orc && Entity.getElfCounter ()

return;

println (attackingEntity.getClass () .getSimpleName () + " w
s left.");

unning = fa

The comments in this allow readers to quickly understand the idea of a function without actually
needing to read through the function. Also adding occasional comments inside to explain further.
The reason behind this is that while yes it is true that good code doesn’t need comments,
describing a piece of code in a sentence shows you truly understand the code you are writing,
and if you know the code better, you write better. The steps I took for this are to simply find areas
of code that could use explanation and write a sentence in your own words as if you are
explaining it. Like in victoryLogic(), what would this function do without reading it? Well, in a
sentence, I can write what it does so you know before looking at the code. This is usually the end
result of refactors and not a branch for more, similar to refactors made in Refactor 4. This

refactor did not require testing as it’s just comments. All these functions were refactored on the
refactor_5 branch, and 2f79f591f4852b4dec916b7a30842e506495b49e¢ is the SHA of the commit
for the completion of the move function, which is the last function I completed.

These are all the refactors I made for Assignment 1, but many more could be possible; these are
just the ones I chose to do for the assignment.

